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CS History: Intel 4004

* First commercially available
microprocessor (single chip with both
data processing logic and control)

e Released in 1971

 Had 12-bit addresses, 8-bit instructions,
and 4-bit data words

* 16 4-bit registers

e Designed for Binary-Coded Decimal, in
which every decimal digit is stored as a
4-bit value

— Support for BCD is still present in x86




Datapath (still simplified a bit)
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addi St1, StO, -1
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What do we need to add to support ori?
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Imagine a slightly different architecture with an ori
instruction that signh-extends its immediate value. If

Stl has value 5, what value does St0 have after
ori $t0, $tl, 0x8003

.0x00008005
.0x00008007 ol
.0x88888007 o
.0x80008005
. OXFFFF8007

1 O Q W =




sw St1, 8(St0)

PCSrc
M
>Add . ¢
LU X
A
4 — Add oqyit
Read ALUS ALU operation
Read . c 4 P
PC address register 1 Read |, MemWrite
Read data 1 MemtoReg
Instruction register 2
Write Registers g, 4 Address Rdeae;g
Instruction register data 2
memory
Write
data
| write  Data
RegWrite " |data memory
MemRead
16= Sign-
~ | extend
St0 holds 0x07AB8110
St1 holds 5
op=0x2B |rs= rt imm = 0x0008




beq Ss0, StO, label
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Composing the Elements

e Data path executes one instruction in one clock cycle
— Each data path element can only do one function at a time

— Hence, we need separate instruction and data memories, ALU and
adders, etc

* Use multiplexers where alternative data sources are used for
different instructions

— Each multiplexer will need select inputs to choose which input to use
as the output



Key Points

* CPU s just a collection of state and combinational logic

* We just designed a very rich processor, at least in terms of
functionality

e ET=1C * CPI * Cycle Time

— Where cycle time is determined by how much work the processor
has to do each clock cycle for one iteration of fetch, decode, execute



What’s next?
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Reading

e Next lecture: Control Path
— Section 5.4
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