CSCI 210: Computer Architecture
Lecture 25: Data Path 2

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Intel 4004

* First commercially available
microprocessor (single chip with both
data processing logic and control)

e Released in 1971

 Had 12-bit addresses, 8-bit instructions,
and 4-bit data words

* 16 4-bit registers

e Designed for Binary-Coded Decimal, in
which every decimal digit is stored as a
4-bit value

— Support for BCD is still present in x86

Datapath (still simplified a bit)

PC

>Add

PCSrc

\

Y

Read
address
Instruction

Instruction
memory

ALUSrc

Read

register 1 Read
Read data 1
register 2

Registers

Write 09 Read
register data 2
Write

data

RegWrite

16_ Sign-
—>

extend

Add

ALU
result

xc=s

4 ALU operation

Read

Address data

Write Data

32

data memory

MemRead

MemWrite

MemtoReg

addi St1, StO, -1

PCSrc
| ’
Add u
LU X
A
4— Add result
Read ALUS ALU operation
Read i rc 4 P
— PC address register 1 Read > MemWrite
F{egd data 1 MemtoReg
Instruction register 2
Regist
Write CJ'SteTS Read Address Rde;g
Instruction register data 2 M
memory u
Write X
data
| Write Data
RegWrite "| data memory
MemRead
16= Sign- 32
~ | extend
St0 holds 10
op=0x08 |rs=8 |rt=9 imm = OxFFFF

What do we need to add to support ori?

PCSrc

-

np

-

xc=g

ALU
Add result

Recall: ori logically ors
the lower 16 bits of the specified
register with the immediate. It does

not change the upper 16 bits.
Read ALUSYr ALU operation
Read - C 4 P
PC address register 1 Read L | MemWrite
Read data 1 MemtoReg
Instruction register 2
Write Registers g,,q Address Rdeae;g
Instruction register data 2
memory
Write
data
_ | Write Data
RegWrite " | data memory
MemRead
16 | sign- | 32
. | extend
ori St0, St1, 0x8003
St1 holds 5
op=0x0D |rs=9 |rt= imm = 0x8003

Imagine a slightly different architecture with an ori
instruction that signh-extends its immediate value. If

Stl has value 5, what value does St0 have after
ori $t0, $tl, 0x8003

.0x00008005
.0x00008007 ol
.0x88888007 o
.0x80008005
. OXFFFF8007

1 O Q W =

sw St1, 8(St0)

PCSrc
M
>Add . ¢
LU X
A
4 — Add oqyit
Read ALUS ALU operation
Read . c 4 P
PC address register 1 Read |, MemWrite
Read data 1 MemtoReg
Instruction register 2
Write Registers g, 4 Address Rdeae;g
Instruction register data 2
memory
Write
data
| write Data
RegWrite " |data memory
MemRead
16= Sign-
~ | extend
St0 holds 0x07AB8110
St1 holds 5
op=0x2B |rs= rt imm = 0x0008

beq Ss0, StO, label

PCSrc

L -
-

*——

Add

xc=s

NS

ALU
4 — Add oq it
Read ALUS ALU operajion
Read . c 4 P
- PC o> address register 1 dR;aa? | R *\\‘ | MemWrite
Read ata
reZ?ster 2 Zero vemioreg
Instruction :
Write Registers g4 ALU ALu Address Read
Instruction register data 2 result data
memory _
| data
| write Data
RegWrite " |data memory
St0 holds 10 e i N v——
St1 holds 10 s»| Sign- | \
. . . extend
label is 33 instructions away so
offset = 0x0020
op=0x2B |rs=8 |rt=9 imm = 0x0020

Composing the Elements

e Data path executes one instruction in one clock cycle
— Each data path element can only do one function at a time

— Hence, we need separate instruction and data memories, ALU and
adders, etc

* Use multiplexers where alternative data sources are used for
different instructions

— Each multiplexer will need select inputs to choose which input to use
as the output

Key Points

* CPU s just a collection of state and combinational logic

* We just designed a very rich processor, at least in terms of
functionality

e ET=1C * CPI * Cycle Time

— Where cycle time is determined by how much work the processor
has to do each clock cycle for one iteration of fetch, decode, execute

What’s next?

All of those blue PCSIo
inputs are control >\ l g
. Add > u
signals X
4— / Add ALY
They control how the .
data flows through the L pcli.|Read aster peaa| | L i
Read data 1 -
data path Instruction re%eilster2_ empnes
Wirite Registers Read Address Read
Instruction register data 2 data
. . memory _
Each instruction) Wit
i Data
(OpCOde + fu nCt) RegWrite > ggrtl;e memory
determines the control 16 [gign. | 2 MemRead
S|gnals ~ | extend

Reading

e Next lecture: Control Path
— Section 5.4

	Slide 1: CSCI 210: Computer Architecture Lecture 25: Data Path 2
	Slide 3: CS History: Intel 4004
	Slide 4: Datapath (still simplified a bit)
	Slide 6: addi $t1, $t0, -1
	Slide 7: What do we need to add to support ori?
	Slide 8: Imagine a slightly different architecture with an ori instruction that sign-extends its immediate value. If $t1 has value 5, what value does $t0 have after ori $t0, $t1, 0x8003
	Slide 9: sw $t1, 8($t0)
	Slide 10: beq $s0, $t0, label
	Slide 11: Composing the Elements
	Slide 12: Key Points
	Slide 13: What’s next?
	Slide 14: Reading

